Skip to main content
Category

GreenBay Digest

Preventive maintenance for your data center made easy with GreenBay!

An ounce of prevention is worth a pound of cure. This cannot be more true for data center maintenance. Effective maintenance strategies help protect your data center from unplanned outages, and reduce repairs and downtime related costs. Shutting down of data center can cost millions of dollars to big facilities.

For the maintenance of your data center to be effective, a comprehensive maintenance strategy must be in place. It includes the following:

Regular inspections

Your data center management staff can carry out the inspections, regular monitoring and checking for poor efficiency use and alarm alerts.

Predictive maintenance

This can be done via a monitoring system. Your onsite staff will monitor trends and measure specific data to predict the potential end of life equipment in the data center.

Corrective works

They help prevent imminent failure through timely procurement of end-of-life equipment and prompt faulty parts replacement.

Preventive maintenance

Equipment should get tested, cleaned, adjusted, and replaced through a planned maintenance schedule to ensure optimal performance at all times.

Preventive maintenance

One of the best ways to ensure minimal amount of equipment failures and shutdowns is to perform preventive maintenance. Preventive maintenance conduct scheduled analyses to catch the defect before occurring. Having a plan in place and executing on it regularly will help avoid unplanned downtime due to battery failure, clogged air filters, and other physical causes which could lead to a crisis in critical infrastructure.
Amongst others, preventive maintenance should include checks on equipment such as switches and routers, circuit breakers, power supplies, cabling, HVAC systems, fire detection, and prevention systems.

Why is preventive maintenance important?

1. Reduces the risk of data center failure
There are high chances that your data center shuts down because of loads of data. That is why maintenance is crucial to avoid interruptions in data storage, access, and retrieval. Shutting down data centers does not only affect the accessibility of data but can also be very costly.

2. Management of operational costs
Preventive maintenance is not only about extending the lifespan of your data center but also managing operating costs. Data centers consume massive energy amounts. One way to lower operational costs is to make sure that your equipment works efficiently by solving or fixing issues in the system.

3. Preventing the risks of downtime
For data centers to keep running through unforeseeable power issues like utility spikes and power outages, most of them depend on the reliability of UPS or Uninterruptible Power Supply systems. Preventive maintenance must be in place to maximize the performance and reliability of the UPS systems by providing systematic detection and correction of failures.

4. Safety of people, equipment and facilties
Safety systems such as VESDA aspirating smoke detection (ASD) which enables early detection and mitigation of potential fire threats, must be regularly maintained for performance and reliability to avoid potential disasters which can cause injury, loss of life and equipment damage.

5. Reducing environmental impact
In the industry of data centers, sustainability must be a priority and should form an integral part of all development strategies moving forward. While the focus remains on green data center strategies, companies can strive to achieve a balance between reduced energy consumption and increased performance by prioritising preventive maintenance.

At GreenBay, we are able to assist you in your preventive maintenance measures. We have the skills and expertise to manage all the equipment that makes your critical infrastructure work. Our training and hands-on experience means that we know what to look out for, and how to handle the physical equipment and the system that runs it, as well as advise and guide you in your maintenance strategy. Get in touch with us today to make your maintenance routine work better for your data center and critical infrastructure.

Huawei’s cooling solutions makes green data centers possible

For data centers, cooling systems consume the most power, and so reducing the energy consumption of cooling systems represents a first crucial step towards a greener data center. While innovation and technology has brought much advancement in the use of natural cooling sources, cooling systems need smart brains that are capable of smart adjustments and on-demand cooling with the constant changes in data center loads and their environments.

For example, China Unicom’s Henan branch (China Unicom Henan) deployed Huawei’s iCooling@AI solution which integrates big data and AI, enabling data centers to learn to save power and automatically optimize their power efficiency, improving data centers’ PUE by 8 to 15 percent.

Located in Henan’s Zhengzhou, the Central Plains Data Center is one of China Unicom’s 12 planned, ultra-large, national data centers. It’s also the only core data center in central China to be built to the T3+/T4 standard. At the start of this strategic partnership project between China Unicom and the Henan provincial government, China Unicom Henan put forward rigid energy consumption requirements for the data center. Its priority was to achieve reliability and a PUE that would be first-class both in China and globally.

In the days before the iCooling@AI solution was adopted for optimizing power efficiency, data center cooling systems were mainly configured manually. This made it difficult to achieve satisfactory results, as the load and environment were constantly changing.

In contrast, iCooling@AI can efficiently and accurately collect all data relating to a data center’s power efficiency. It then uses the deep neural network for modelling and accurately compares the created models with the data center’s operating status, which is optimized every hour. As a data center’s load increases, the cooling mode changes and the AI becomes more capable of learning. This leads to constant improvements in power saving that significantly reduce power consumption and waste.

With the adoption of the iCooling@AI solution, components of a data center cooling system will collaborate intelligently and operate efficiently, optimizing the entire system’s power efficiency.

Source: Huawei

Huawei helps Three Gorges Group build the largest green data center cluster in Central China

Chinese energy company Three Gorges Group (CTG) has completed the first phase of its Dongyuemiao Data Center project in Yichang, Hubei.

The data center is located on the right bank of the Three Gorges Dam — one of the world’s largest hydropower stations. Once all three phases of the project are completed, the data center will house 26,400 racks, spanning over 100,000 square meters — becoming the largest green data center cluster in central China.

The facility was built in partnership with Huawei Digital Power. The company provided 160 modular equipment rooms, 38 PowerPODs, 320 SmartLi battery energy storage devices, 160 high-temperature fan walls, one iCooling@AI cooling system, and one ‘AI-Robot’ for inspection uses.

The entire power consumption of this first phase, amounting to over 200 million kWh electricity per year, will be supplied using clean hydropower generated by the Three Gorges Dam. The project is naturally cooled by water from the river to significantly reduce energy consumption and boost energy efficiency.

The Dongyuemiao Data Center is built in accordance with the national class-A equipment room standards. It utilizes industry-leading technologies along with proprietary, secure, and controllable products, to become the first large-scale, green, zero-carbon data center in China.

The Dongyuemiao Data Center is a key digital transformation project for the Three Gorges Group and part of its 14th Five-Year Plan, which prioritizes green, digital development.

Source: PRNewswire

How do you ensure that your data center is indeed green?

In our pursuit towards sustainability, GreenBay was recently awarded the highest Diamond tier of the GCI Certified Green Computing Vendor (CGCV).

The Green Computing Initiative (GCI) has been the leading green computing accreditation and certification organization that certifies and endorses organizations and professionals in Green Computing technologies since 2008. GCI certification is the standard of excellence that the industry seeks in order to ensure efficient and effective sustainable computing practices.

In our pursuit towards sustainability, GreenBay was recently awarded the highest Diamond tier of the GCI Certified Green Computing Vendor (CGCV).

The Green Computing Initiative (GCI) has been the leading green computing accreditation and certification organization that certifies and endorses organizations and professionals in Green Computing technologies since 2008. GCI certification is the standard of excellence that the industry seeks in order to ensure efficient and effective sustainable computing practices.

The CGCV certification
As an implementiation vendor for green data centers, this certification verifies GreenBay conforms to the prescribed standards and quality of work. There are 5 certification tiers namely Diamond, Pearl, Ruby, Sapphire and Emerald. Diamond is the highest tier whilst Emerald is the lowest tier.

Why is it important to engage a GCI Certified Green Computing Vendor (CGCV)?
High demand for data storage management, growing energy cost, and massive electricity consumption have been the catalysts for the increasing demand of green data centers. A green data center offers identical features and abilities of a traditional data center but uses a lower amount of energy and space. Therefore, green data centers are regarded as eco-friendlier and a must for organisations who prioritise sustainability.

GCI provides the industry’s benchmark in recognizing and rewarding best practice in facility energy efficiency and carbon footprint management. GCI’s Certified Green Computing Facility (CGCF) certification provides verifiable evidence that an organization is not only claiming it follows green computing facility best practices but that it has ACTUALLY implemented them.

By engaging a GCI Certified Green Computing Vendor (CGCV), you are assured of a best in its class green data center which maximises energy efficiency.

In addition, engaging a Certified Implementation Vendor, such as GreenBay, ensures that every aspect of a data center project can successfully ace intensive auditing by GCI to obtain it’s green data center facility certification.

A CGCF certified data center stands to enjoy major cost savings through energy efficiency and is prepared for eventual carbon legislation. It is also an acknowledgement of an organizations’s environmental sustainability efforts.

Huawei deploys a green data center for China Mobile in just 6 months!

Xi’an, located in Northwest China, is one of the most historical cities in the world, serving as the capital for much of ancient China. Home to the famous Terracotta Army, the city receives hundred of millions of tourists every year.

Droves of tourists bring massive torrents of data. According to third-party database company Statista, 2021 saw a 79 Zettabyte (ZB) increase in data volume, the equivalent of approximately 79 billion Terabytes (TB). Such dramatic increases in data volumes put heavy strains on operators, and those in Xi’an are no exception to this trend.

In order to deal with an influx in mobile data, China Mobile set an ambitious goal to build its new and green Xixian Data Center (Shaanxi) in Xi’an. In collaboration with long-term partner Huawei, they decided on a solution that involved combining a prefabricated modular data center with indirect evaporative cooling technology to achieve a quick service rollout while prioritizing green and low-carbon results.

The data center was divided into 232 modules with the equipment all prefabricated and preinstalled in the factory. Then, after completing onsite preparation, LEGO-like construction was performed. This allowed engineers to complete the entire service rollout in just six months, with construction waste and dust slashed by 80%, and a material recovery rate exceeding 80%.

Huawei’s indirect evaporative cooling technology, however, capitalizes on Xi’an’s climate, drawing air from the surroundings to cool the facilities. Powered by Artificial Intelligence (AI) technology, the air compressor is only needed for two months of the year, with the facility relying on natural cooling for the other 10 months, reducing the cooling system’s energy consumption by more than 50%. As such, over a 10-year cycle, nearly 60 million kWh of electricity is saved, alongside 400,000 tonnes of water, which translates into slashing carbon emissions by 27,000 tonnes, the equivalent of planting 37,000 trees.

Huawei recently delivered a prefabricated modular data center for Safaricom as the telco begins to ramp up operations and launch a mobile network service in Ethiopia.

Source: PRNewswire

The Application Series: How to determine the reliability of a data center for a financial insitution

In a digital age, businesses increasingly rely on data centers to deliver high-availability environments that support their mission-critical workload.

With financial institutions, every minute of downtime can impact revenue, productivity, customer satisfaction and reputation. The cost of an hour of downtime can range from $1 million to more than $5 million, excluding legal fees, fines and penalties. This number can climb to millions per minute if the outage interrupts a major business transaction or occurs during peak business hours.

Given the potential of a severe financial burden, financial institutions need a data center that can deliver the reliability that matches their uptime requirements.

How do you measure data center reliability?

Uptime Institute’s Tier Standard is the globally recognized standard for data center reliability and overall performance. Founded in 1993, the Uptime Institute has been dedicated to the exploration and study of data center infrastructure.

In 2005, the Uptime Institute designed the data center Tier Classification System which offers a consistent and objective international standard for data center performance. The capabilities of a data center escalate as you graduate from Tier I, which offers the least reliability, to Tier IV, with the most.

The Tier Classification System

Each tier includes the requirements of the previous level as you move up the tier ladder.

As the most basic level, a Tier I data center extends no guarantee of redundancy for any critical systems. At a minimum, the Uptime Institute requires it to offer a UPS; a designated space for IT systems; dedicated cooling equipment that runs outside of office hours; and an engine generator.

Tier II data centers build on the requirements of Tier I to include some redundant components. While this partial redundancy improves reliability to 99.741% uptime yearly, these facilities still utilize a single distribution path for power and cooling and are still susceptible to unexpected interruptions.

The architecture of a Tier III data center offers the capacity to support the full IT load and also offers an additional component for backup purposes, so performance is not impacted if a single component fails. The level of redundancy here offers concurrent maintainability, meaning that each critical component or distribution path can be shut down for planned maintenance without affecting the IT environment. However, Tier III data centers can conduct routine maintenance without impacting service, but are still at risk of downtime during unscheduled events.

Tier IV data centers are the most sophisticated tier certified by the Uptime Institute. Offering a completely independent architecture that duplicates every critical component of the primary architecture and provides multiple distribution paths, this fault-tolerant design provides twice the capacity required to operate at full IT load. This tier is generally populated by government organizations and large global enterprises with mission-critical servers and intense customer or business demands.

For industries with mission-critical workloads such as the financial sector, data centers must be reliable and that operations are not derailed due to system failure or natural disaster. The Tier Classification System provides a guide on the data center tier level that can best balance your risk tolerance and budget.

The Application Series: Spotlight on the Importance of Data Centers for the Financial Sector

The financial sector is dealing with an increasing volume of data to be managed – data which must be stored securely and data which must move fast. Here’s a look at the many ways that the financial sector rely upon data centers.

Electronic trading drives demand

The shift to electronic trading has been a significant factor in the financial sector’s use of data centers. It has increased access to financial market data, allowing anyone with an internet connection to get involved in stock trading. Trading happens all over the world, and data centers must handle the demand and perform consistently.

Big data processing and analytics

The popularity and use of Big Data increases every year, which ultimately improves understanding of clients’ needs, their experience and behaviour models. According to the research conducted by IDC research, the banking sector invests the most money in the analysis of Big Data. This can be explained by the increase in the number of solutions and products created by FinTech companies specifically for banks to manage assets and liabilities.

Big data processing and analytics

The popularity and use of Big Data increases every year, which ultimately improves understanding of clients’ needs, their experience and behaviour models. According to the research conducted by IDC research, the banking sector invests the most money in the analysis of Big Data. This can be explained by the increase in the number of solutions and products created by FinTech companies specifically for banks to manage assets and liabilities.

Using AI to make trading decisions

When financial traders have sufficient information, they can make the most effective decisions as the market fluctuates. People are increasingly using artificial intelligence (AI) to get better results in the financial sector. AI applications require processing at well-equipped data centers. Unnecessary delays in the financial trading sector could make people miss out on opportunities that could grow their wealth.

The financial sector depends on data centers for success. That will almost certainly remain true as data-driven technologies become more advanced. This reliance means data centers must deliver high-availability environments that support their mission-critical workloads. For institutions in the financial sector, data center uptime is of upmost importance. Stay tuned for the next article in The Application Series as we explore data center uptime and performance.

The Application Series: Protecting the Telecommunications Industry

Critical infrastructure’s top priority is to assure safety, health and welfare for all citizens.

According to the United States government’s Cybersecurity & Infrastructure Security Agency (CISA), critical infrastructure is the power used in homes, the water we drink, the transportation that moves us, the stores where we shop, and the Internet and communications we rely on to maintain our contact with friends, family, and colleagues.

With the Covid-19 pandemic, it has become undeniable that the communications industry is an integral component worldwide in terms of economy, public safety, businesses, and even interpersonal relationships.

There are many aspects needed to support and help the telecommunications industry achieve true resilience, and to protect infrastructures from various challenges. Here, we outline some of the most vital services which are often neglected.

UPS system

Telecommunications companies, which must maintain the infrastructure in addition to data storage and backup, depend on uninterruptable power supply (UPS) systems. They ensure that the landline, internet and mobile communications function nationwide. Therefore the right UPS system is extremely important to maintain the network until a power failure has ended or an emergency generator takes over.

Very early warning aspirating smoke detection

Protecting these telecommuncations infrastructures against fires is vital but detecting the early signs of a fire can be a real challenge. Very-early-warning aspirating smoke detection can reveal the earliest signs of fire threats to help telecommunications operators potentially prevent disruption from fire that can put people, assets and data at risk.

Precision air conditioning

As telecom equipment generates large quantities of heat in small areas, six to ten times the heat density of normal office space, the air conditioning system must have more than just enough cooling capacity. It must have the precision to react quickly to a drastic change in heat load and prevent wide temperature fluctuations.

Conclusion
As 5G and the IoT move to center stage, telecommunications services provider have become key instruments to lead society in the new phase of the information era. At GreenBay, we provide these important services (and more) to assist telecommunications operators to provide the reliability of services that is expected from them.

The Application Series: Spotlight on Early Warning Smoke Detection Systems in Hospitals & Healthcare Facilities

As we have highlighted last week, hospitals simply cannot afford disruption. When it comes to evacuating differing number and characteristics of patients, medical and support staff, the risks of hidden, slow growth and fast growth fires becomes significant. This is where an advanced fire detection system such as VESDA aspirating smoke detection (ASD) can help. It’s extensive coverage and addressability can keep staff and patients safer.

We address the unique challenges in specific areas in a hospital and how a very-early-warning aspirating detection system can overcome them.

Operating Theaters & Wards

With various combustibles and ignition sources, fire accidents in operating theaters are extremely dangerous. From the various medical needs and mobility levels of patients to the the sheer number of staff, evacuation procedures is a challenge. Equally challenging is accessing restricted areas for detector maintenance where interruption free operations are essential.

The early warning fire detection capability will pinpoint with accuracy the fire source. This provides the earliest possible warning and allow time for intervention and control to minimize or eliminate the need for evacuation. In the event that the fire condition escalates, the pinpoint capability can provide information of hazardous conditions fire fighters and to staff when moving patients to protected areas or through corridors, stairways, etc.

During evacuation, the signal from VESDA systems can serve for the automatic release of fire doors or security doors along egress paths. With centralized test and maintenance capability, there is no need to access restricted areas. Servicing and testing can be performed at the detector unit which reduces time and cost.

MRI Facilities

MRI (magnetic resonance imaging) facilities do not permit the installation of fire detection which contains metallic (ferromagnetic) components. A fire within or near a MRI system will present a serious threat to life safety, high value equipment and facility, creating particular challenges for evacuation and fire response. In addition, leakage of cryogenic gas in the MRI scanner room will displace oxygen leading to risk of asphyxiation.

VESDA’s system is packaged with various MRI OEM as part of the solution as it can remotely protect high cost equipment and provide early warning of potential fire hazard due to the use of plastic or aspirating tubes or pipes. Similarly, the early warning capability of a VESDA system will ensure fire is detected at the earliest possible stage. Therefore, the shutdown of the MRI system can be done swiftly before the fire escalates. This prevents lengthy downtime and high costs of re-initiation. The system also has gas detectors incorporated in the pipe network to monitor reduced oxygen levels caused by cryogenic gas leaks.

Laboratories, Nuclear Medicine and Sterilization Areas

These areas have delicate equipment, high-energy high-cost technology with hazardous chemical, radioactive or biological material. Any fire accidents, gas leak from storage / distribution lines or gas byproducts in these areas can be life threatening.

VESDA detectors provide active and multipoint detection of fire and gas threats. By remotely placing the detectors outside the protected area, any risk due to contamination or catastrophic release of toxic materials and gases is mitigated.

Conclusion
A very-early-warning aspirating detection system helps hospitals support patient safety while identifying concerns before they become emergencies. It enables the early detection and mitigation of potential fire threats while minimizing installation and maintenance time. This way, hospitals can keep their staff and patients safe while remaining fully operational.

The Application Series: Spotlight on Power Systems for Hospitals & Healthcare Facilities

Hospitals are the core of community response in an emergency. Hospitals have a complex infrastructure that requires a constant power supply to maintain life-saving daily operations. The interruption or loss of electric power does not only cause mere inconvenience but can result in a tragic event.

The importance of UPS in hospitals

Patients who depend on the proper operation of hospital equipment to sustain essential functions are at direct risk in the event of a power outage. Therefore with the right UPS solution, machines such as ventilators which only have a 90-minute backup battery can continue to operate.

Other equipment which may not be linked directly to a patient’s life but are extremely essential to their safety such as temperature control system and sterilization facilities, can continue to run in the absence of electricity.

Throughout hospital facilities, medical staff must monitor patients and maintain friction-less communication. In the event of a power outage, a suitable UPS solution can support these services better than costly and outdated back-up generators.

Important functions are placed in jeopardy during any momentary lapse in electrical power, including the loss of critical patient data, emergency lighting, exit signs, and security systems. A UPS solution suited to the demands of a hospital can ensure that power outages do not affect the performance of an entire hospital facility.

Isolated Power Systems (IPS)

As technology progresses, medical facilities rely more heavily on advanced electrical equipment for critical patient care. Special protection against electric shock is required to be installed in:
• Intensive care units (ICUs)
• Coronary care units (CCUs)
• Emergency departments
• Special procedure rooms
• Cardiovascular laboratories
• Dialysis units
• Various wet locations

Isolated power systems are the preferred method of achieving this protection where power interruption cannot be tolerated. These systems for healthcare are designed to protect patients and personnel from electric shock in critical care areas, maintain the continuity of power in the event of a first line-to-ground fault, and continuously monitor the cumulative hazard current from all connected equipment.

Isolated power solutions offer wide-ranging benefits, including reducing electrical shock risk, reinforcing energy availability, and supporting operational efficiency.

Installing an isolated power system reduces the possibility of electrical shock for both patients and caregivers. It maintains power continuity for life support equipment and give advance warning of potential equipment failure.

Conclusion
Ideally, power outage should never occur in the hospitals. Unfortunately, it happens and in the event of a power outage, a reliable power system can protect patients, staff, and data alike to maintain a hospital’s high efficiency and critical functions running without interruption.