Skip to main content
All Posts By

admin

Site Supervisor

JOB RESPONSIBILITIES

  • Supervising workers, subcontractors and work activities.
  • Preparing and presenting site inductions, safety briefings and toolbox talks.
  • Assessing and managing safety hazards.
  • Ensuring appropriate site rules and welfare facilities are in place.
  • Carrying out regular inspections.
  • Helping project managers to plan the work programmed
  • Helping co-ordinate deliveries of materials, plant and equipment.
  • Completing records for site reports.
  • Attending site management meetings.
  • Carrying out regular inspections to ensure compliance with relevant legal requirements, processes and procedures.
  • Raising safety concerns at the appropriate level.
  • Resolving problems and implementing improvements.
  • Organizing and overseeing external inspections, such as with a health and safety inspector.
  • Providing emergency first aid if required.

SUPERVISION

  • Receives daily supervision and workload from the Head of Department, Admin Department
  • Receives general supervision from the Director, Project Engineer, Admin & Finance

REQUIREMENT

  • Diploma of Engineering in Mechanical or Electrical or Equivalent.
  • More than 2 years of experience in related field
  • Proficient in writing in Malay & English
  • Multi-tasks effectively with good attitude
  • Trustworthy and able to maintain confidentiality with high level of commitment and initiative
  • Able to work independently
  • Computer literate
  • A positive attitude.
  • The ability to communicate with, motivate, and if necessary discipline the workforce.
  • The ability to understand drawings and other contract documents.
  • A good understanding of safety procedures.
    An understanding of legal responsibilities.
    An understanding of occupational health and behavioral safety issues.

SUBMISSION

Position is based in Shah Alam. Kindly send in your application and your resume to:
siti@greenbayces.com

Project Manager

JOB RESPONSIBILITIES

  • Work with Sales and Solution Team to help plan, develop and execute the finalization of project.
  • Coordinating internal resources and vendors for the flawless execution of projects
  • Ensuring that all projects are delivered on-time, within scope and within budget
  • Developing project scopes and objectives, involving all relevant stakeholders and ensuring technical feasibility.
  • Ensure resource availability and allocation
  • Develop a detailed project plan to track progress
  • Use appropriate verification techniques to manage changes in project scope, schedule and costs
  • Measure project performance using appropriate systems, tools and techniques
  • Report and escalate to management as needed
  • Manage the relationship with the client and all stakeholders
  • Perform risk management to minimize project risks
  • Create and maintain comprehensive project documentation
  • Prepare, schedule, coordinate, cooperate and communicate with contractor, customer and Project Team.
  • Manage project department

SUPERVISION

  • Receives general supervision from the Director

REQUIREMENT

  • Bachelor’s Degree in any engineering field.
  • More than 5 years of experience in related field (Data Center)
  • Proficient in writing in Malay & English
  • Multi-tasks effectively with good attitude
  • Trustworthy and able to maintain confidentiality with high level of commitment and initiative
  • Some knowledge in ISO documentation is necessary
  • Able to work independently
  • Computer literate

SUBMISSION

Position is based in Shah Alam. Kindly send in your application and your resume to:
siti@greenbayces.com

Project Engineer

JOB RESPONSIBILITIES

  • Schedule preparation, pre-planning and resource forecasting for engineering and other technical activities relating to the project.
  • Attending site visit prior to project kick off, project meeting whenever required.
  • Oversee performance of vendors involved during the project implementation stages.
  • Assure the accuracy of financial forecasts, which tie-in to project schedules. Able to control expenses to meet budget guidelines.
  • Ensure projects are completed according to project plans, monitor the project implementation meeting project objectives, budget, timeline, expectation by client and to meeting quality that set by GreenBay.
  • Manage project team resources and training and develop extensive project management experience and expertise.
  • Adheres to all company policies, procedures and business ethics codes and ensures that they are communicated and implemented within the team.
  • Comprehensive project documentation and report comprise of daily and weekly report, project signoff, project handover documentation and other related documentation that set by GreenBay.
  • Reporting to the Project Manager

REQUIREMENT

  • Bachelor’s degree (Hons) Electrical Power Engineering or Mechanical Engineering.
  • More than 3 years of experience in related field. Experience in Data Center project(s) and/or field would be an added advantage.
  • Proficient in writing in English
  • Multi-tasks effectively with good attitude
  • Trustworthy and able to maintain confidentiality with high level of commitment and initiative
  • Some knowledge in ISO documentation is necessary
  • Able to work independently
  • Computer literate
  • Hardworking and willing to learn
    Full-time position available.
    Monday to Friday, Cumulative of 8 working hours a day.

SUBMISSION

siti@greenbayces.com (for positions based in Shah Alam)
cy.wong@greenbayces.com (for positions based in Penang)

Huawei deploys a green data center for China Mobile in just 6 months!

Xi’an, located in Northwest China, is one of the most historical cities in the world, serving as the capital for much of ancient China. Home to the famous Terracotta Army, the city receives hundred of millions of tourists every year.

Droves of tourists bring massive torrents of data. According to third-party database company Statista, 2021 saw a 79 Zettabyte (ZB) increase in data volume, the equivalent of approximately 79 billion Terabytes (TB). Such dramatic increases in data volumes put heavy strains on operators, and those in Xi’an are no exception to this trend.

In order to deal with an influx in mobile data, China Mobile set an ambitious goal to build its new and green Xixian Data Center (Shaanxi) in Xi’an. In collaboration with long-term partner Huawei, they decided on a solution that involved combining a prefabricated modular data center with indirect evaporative cooling technology to achieve a quick service rollout while prioritizing green and low-carbon results.

The data center was divided into 232 modules with the equipment all prefabricated and preinstalled in the factory. Then, after completing onsite preparation, LEGO-like construction was performed. This allowed engineers to complete the entire service rollout in just six months, with construction waste and dust slashed by 80%, and a material recovery rate exceeding 80%.

Huawei’s indirect evaporative cooling technology, however, capitalizes on Xi’an’s climate, drawing air from the surroundings to cool the facilities. Powered by Artificial Intelligence (AI) technology, the air compressor is only needed for two months of the year, with the facility relying on natural cooling for the other 10 months, reducing the cooling system’s energy consumption by more than 50%. As such, over a 10-year cycle, nearly 60 million kWh of electricity is saved, alongside 400,000 tonnes of water, which translates into slashing carbon emissions by 27,000 tonnes, the equivalent of planting 37,000 trees.

Huawei recently delivered a prefabricated modular data center for Safaricom as the telco begins to ramp up operations and launch a mobile network service in Ethiopia.

Source: PRNewswire

The Application Series: How to determine the reliability of a data center for a financial insitution

In a digital age, businesses increasingly rely on data centers to deliver high-availability environments that support their mission-critical workload.

With financial institutions, every minute of downtime can impact revenue, productivity, customer satisfaction and reputation. The cost of an hour of downtime can range from $1 million to more than $5 million, excluding legal fees, fines and penalties. This number can climb to millions per minute if the outage interrupts a major business transaction or occurs during peak business hours.

Given the potential of a severe financial burden, financial institutions need a data center that can deliver the reliability that matches their uptime requirements.

How do you measure data center reliability?

Uptime Institute’s Tier Standard is the globally recognized standard for data center reliability and overall performance. Founded in 1993, the Uptime Institute has been dedicated to the exploration and study of data center infrastructure.

In 2005, the Uptime Institute designed the data center Tier Classification System which offers a consistent and objective international standard for data center performance. The capabilities of a data center escalate as you graduate from Tier I, which offers the least reliability, to Tier IV, with the most.

The Tier Classification System

Each tier includes the requirements of the previous level as you move up the tier ladder.

As the most basic level, a Tier I data center extends no guarantee of redundancy for any critical systems. At a minimum, the Uptime Institute requires it to offer a UPS; a designated space for IT systems; dedicated cooling equipment that runs outside of office hours; and an engine generator.

Tier II data centers build on the requirements of Tier I to include some redundant components. While this partial redundancy improves reliability to 99.741% uptime yearly, these facilities still utilize a single distribution path for power and cooling and are still susceptible to unexpected interruptions.

The architecture of a Tier III data center offers the capacity to support the full IT load and also offers an additional component for backup purposes, so performance is not impacted if a single component fails. The level of redundancy here offers concurrent maintainability, meaning that each critical component or distribution path can be shut down for planned maintenance without affecting the IT environment. However, Tier III data centers can conduct routine maintenance without impacting service, but are still at risk of downtime during unscheduled events.

Tier IV data centers are the most sophisticated tier certified by the Uptime Institute. Offering a completely independent architecture that duplicates every critical component of the primary architecture and provides multiple distribution paths, this fault-tolerant design provides twice the capacity required to operate at full IT load. This tier is generally populated by government organizations and large global enterprises with mission-critical servers and intense customer or business demands.

For industries with mission-critical workloads such as the financial sector, data centers must be reliable and that operations are not derailed due to system failure or natural disaster. The Tier Classification System provides a guide on the data center tier level that can best balance your risk tolerance and budget.

The Application Series: Spotlight on the Importance of Data Centers for the Financial Sector

The financial sector is dealing with an increasing volume of data to be managed – data which must be stored securely and data which must move fast. Here’s a look at the many ways that the financial sector rely upon data centers.

Electronic trading drives demand

The shift to electronic trading has been a significant factor in the financial sector’s use of data centers. It has increased access to financial market data, allowing anyone with an internet connection to get involved in stock trading. Trading happens all over the world, and data centers must handle the demand and perform consistently.

Big data processing and analytics

The popularity and use of Big Data increases every year, which ultimately improves understanding of clients’ needs, their experience and behaviour models. According to the research conducted by IDC research, the banking sector invests the most money in the analysis of Big Data. This can be explained by the increase in the number of solutions and products created by FinTech companies specifically for banks to manage assets and liabilities.

Big data processing and analytics

The popularity and use of Big Data increases every year, which ultimately improves understanding of clients’ needs, their experience and behaviour models. According to the research conducted by IDC research, the banking sector invests the most money in the analysis of Big Data. This can be explained by the increase in the number of solutions and products created by FinTech companies specifically for banks to manage assets and liabilities.

Using AI to make trading decisions

When financial traders have sufficient information, they can make the most effective decisions as the market fluctuates. People are increasingly using artificial intelligence (AI) to get better results in the financial sector. AI applications require processing at well-equipped data centers. Unnecessary delays in the financial trading sector could make people miss out on opportunities that could grow their wealth.

The financial sector depends on data centers for success. That will almost certainly remain true as data-driven technologies become more advanced. This reliance means data centers must deliver high-availability environments that support their mission-critical workloads. For institutions in the financial sector, data center uptime is of upmost importance. Stay tuned for the next article in The Application Series as we explore data center uptime and performance.

The Application Series: Protecting the Telecommunications Industry

Critical infrastructure’s top priority is to assure safety, health and welfare for all citizens.

According to the United States government’s Cybersecurity & Infrastructure Security Agency (CISA), critical infrastructure is the power used in homes, the water we drink, the transportation that moves us, the stores where we shop, and the Internet and communications we rely on to maintain our contact with friends, family, and colleagues.

With the Covid-19 pandemic, it has become undeniable that the communications industry is an integral component worldwide in terms of economy, public safety, businesses, and even interpersonal relationships.

There are many aspects needed to support and help the telecommunications industry achieve true resilience, and to protect infrastructures from various challenges. Here, we outline some of the most vital services which are often neglected.

UPS system

Telecommunications companies, which must maintain the infrastructure in addition to data storage and backup, depend on uninterruptable power supply (UPS) systems. They ensure that the landline, internet and mobile communications function nationwide. Therefore the right UPS system is extremely important to maintain the network until a power failure has ended or an emergency generator takes over.

Very early warning aspirating smoke detection

Protecting these telecommuncations infrastructures against fires is vital but detecting the early signs of a fire can be a real challenge. Very-early-warning aspirating smoke detection can reveal the earliest signs of fire threats to help telecommunications operators potentially prevent disruption from fire that can put people, assets and data at risk.

Precision air conditioning

As telecom equipment generates large quantities of heat in small areas, six to ten times the heat density of normal office space, the air conditioning system must have more than just enough cooling capacity. It must have the precision to react quickly to a drastic change in heat load and prevent wide temperature fluctuations.

Conclusion
As 5G and the IoT move to center stage, telecommunications services provider have become key instruments to lead society in the new phase of the information era. At GreenBay, we provide these important services (and more) to assist telecommunications operators to provide the reliability of services that is expected from them.

The Application Series: Spotlight on Early Warning Smoke Detection Systems in Hospitals & Healthcare Facilities

As we have highlighted last week, hospitals simply cannot afford disruption. When it comes to evacuating differing number and characteristics of patients, medical and support staff, the risks of hidden, slow growth and fast growth fires becomes significant. This is where an advanced fire detection system such as VESDA aspirating smoke detection (ASD) can help. It’s extensive coverage and addressability can keep staff and patients safer.

We address the unique challenges in specific areas in a hospital and how a very-early-warning aspirating detection system can overcome them.

Operating Theaters & Wards

With various combustibles and ignition sources, fire accidents in operating theaters are extremely dangerous. From the various medical needs and mobility levels of patients to the the sheer number of staff, evacuation procedures is a challenge. Equally challenging is accessing restricted areas for detector maintenance where interruption free operations are essential.

The early warning fire detection capability will pinpoint with accuracy the fire source. This provides the earliest possible warning and allow time for intervention and control to minimize or eliminate the need for evacuation. In the event that the fire condition escalates, the pinpoint capability can provide information of hazardous conditions fire fighters and to staff when moving patients to protected areas or through corridors, stairways, etc.

During evacuation, the signal from VESDA systems can serve for the automatic release of fire doors or security doors along egress paths. With centralized test and maintenance capability, there is no need to access restricted areas. Servicing and testing can be performed at the detector unit which reduces time and cost.

MRI Facilities

MRI (magnetic resonance imaging) facilities do not permit the installation of fire detection which contains metallic (ferromagnetic) components. A fire within or near a MRI system will present a serious threat to life safety, high value equipment and facility, creating particular challenges for evacuation and fire response. In addition, leakage of cryogenic gas in the MRI scanner room will displace oxygen leading to risk of asphyxiation.

VESDA’s system is packaged with various MRI OEM as part of the solution as it can remotely protect high cost equipment and provide early warning of potential fire hazard due to the use of plastic or aspirating tubes or pipes. Similarly, the early warning capability of a VESDA system will ensure fire is detected at the earliest possible stage. Therefore, the shutdown of the MRI system can be done swiftly before the fire escalates. This prevents lengthy downtime and high costs of re-initiation. The system also has gas detectors incorporated in the pipe network to monitor reduced oxygen levels caused by cryogenic gas leaks.

Laboratories, Nuclear Medicine and Sterilization Areas

These areas have delicate equipment, high-energy high-cost technology with hazardous chemical, radioactive or biological material. Any fire accidents, gas leak from storage / distribution lines or gas byproducts in these areas can be life threatening.

VESDA detectors provide active and multipoint detection of fire and gas threats. By remotely placing the detectors outside the protected area, any risk due to contamination or catastrophic release of toxic materials and gases is mitigated.

Conclusion
A very-early-warning aspirating detection system helps hospitals support patient safety while identifying concerns before they become emergencies. It enables the early detection and mitigation of potential fire threats while minimizing installation and maintenance time. This way, hospitals can keep their staff and patients safe while remaining fully operational.

The Application Series: Spotlight on Power Systems for Hospitals & Healthcare Facilities

Hospitals are the core of community response in an emergency. Hospitals have a complex infrastructure that requires a constant power supply to maintain life-saving daily operations. The interruption or loss of electric power does not only cause mere inconvenience but can result in a tragic event.

The importance of UPS in hospitals

Patients who depend on the proper operation of hospital equipment to sustain essential functions are at direct risk in the event of a power outage. Therefore with the right UPS solution, machines such as ventilators which only have a 90-minute backup battery can continue to operate.

Other equipment which may not be linked directly to a patient’s life but are extremely essential to their safety such as temperature control system and sterilization facilities, can continue to run in the absence of electricity.

Throughout hospital facilities, medical staff must monitor patients and maintain friction-less communication. In the event of a power outage, a suitable UPS solution can support these services better than costly and outdated back-up generators.

Important functions are placed in jeopardy during any momentary lapse in electrical power, including the loss of critical patient data, emergency lighting, exit signs, and security systems. A UPS solution suited to the demands of a hospital can ensure that power outages do not affect the performance of an entire hospital facility.

Isolated Power Systems (IPS)

As technology progresses, medical facilities rely more heavily on advanced electrical equipment for critical patient care. Special protection against electric shock is required to be installed in:
• Intensive care units (ICUs)
• Coronary care units (CCUs)
• Emergency departments
• Special procedure rooms
• Cardiovascular laboratories
• Dialysis units
• Various wet locations

Isolated power systems are the preferred method of achieving this protection where power interruption cannot be tolerated. These systems for healthcare are designed to protect patients and personnel from electric shock in critical care areas, maintain the continuity of power in the event of a first line-to-ground fault, and continuously monitor the cumulative hazard current from all connected equipment.

Isolated power solutions offer wide-ranging benefits, including reducing electrical shock risk, reinforcing energy availability, and supporting operational efficiency.

Installing an isolated power system reduces the possibility of electrical shock for both patients and caregivers. It maintains power continuity for life support equipment and give advance warning of potential equipment failure.

Conclusion
Ideally, power outage should never occur in the hospitals. Unfortunately, it happens and in the event of a power outage, a reliable power system can protect patients, staff, and data alike to maintain a hospital’s high efficiency and critical functions running without interruption.

The Application Series: Spotlight on Manufacturing Industry

When it comes to the manufacturing industry, we often think that the most important assets are the machinery and equipment. These are assets which we see – but what is unseen is equally important.

For example, uninterrupted power for the entire plant, or fire suppression systems which are capable of detecting and suppressing fires in unmanned environments. These are systems which ensure business continuity, and the safety of assets and more importantly, people. These are the systems that we provide.

At GreenBay, we have served a variety of manufacturing industries such as F&B, semiconductor, automobiles, plastics and packaging, FMCG, textiles and steel. We understand their unique needs which means we are able to provide solutions specific to each business.

Here are some of the solutions that we provide which are essential to manufacturing industries to ensure that their facilities remain productive and safe.

Early warning smoke detection system for cleanroom production environment

The damage from a cleanroom fire can be far greater as cleanrooms are critical to the manufacturing process and often are not duplicated. Even a small fire with relatively low physical damage can result in significant loss of production while the room is being decontaminated. Therefore this system is extremely important as detecting smoke as early as possible minimizes contamination of the cleanroom and allows the most time to respond to a threat.

UPS system for production and data center

Uninterruptible power supply systems are a core component of mission-critical facilities. We provide UPS systems which integrate seamlessly into production facilities and data centers to provide consistent, efficient power, even if your primary supply goes down.

Precision air conditioning system for production and data center

Cooling solutions have long been a burden to energy expenses. At GreenBay, we provide efficient and reliable solutions which intelligently adapts and utilises it’s surroundings for massive power savings even with non-stop daily operations.

Water leak detection system for cleanroom, production and data center

Massive failures can occur if a business overlooks its water leak detection system for it’s manufacturing facility. Even small leaks undetected can lead to a devastating malfunction machinery and equipment. At GreenBay, we provide water leak detection systems so that precautionary measures can be executed quickly.

Clean agent fire suppression system for substation, electrical rooms and data center

The solutions that we provide minimises downtime and produces none of the water damage associated with traditional sprinkler systems. Our aim is to provide fast-acting fire suppressing capability, so that even concealed fires can be extinguished.

The cornerstone of any successful economy is having its manufacturing industry running 24/7. Whatever the machinery or plant involved, the powering of commerce has inherent risks. It is important to be well-prepared, and we are ready to be your partner in prioritising safety and ensuring business continuity.